Data-Driven Optimal Power Flow: A Physics-Informed Machine Learning Approach

نویسندگان

چکیده

This paper proposes a data-driven approach for optimal power flow (OPF) based on the stacked extreme learning machine (SELM) framework. SELM has fast training speed and does not require time-consuming parameter tuning process compared with deep algorithms. However, direct application of OPF is tractable due to complicated relationship between system operating status solutions. To this end, regression framework developed that decomposes model features into three stages. only reduces complexity but also helps correct bias. A sample pre-classification strategy active constraint identification achieve enhanced feature attractions. Numerical results carried out IEEE Polish benchmark systems demonstrate proposed method outperforms other alternatives. It shown can be easily extended address different test by adjusting few hyperparameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data-Driven Power Flow Linearization: A Regression Approach

The linearization of a power flow (PF) model is an important approach for simplifying and accelerating the calculation of a power system's control, operation, and optimization. Traditional model-based methods derive linearized PF models by making approximations in the analytical PF model according to the physical characteristics of the power system. Today, more measurements of the power system ...

متن کامل

Thoughtful Machine Learning - A Test-Driven Approach

Spend your time even for only few minutes to read a book. Reading a book will never reduce and waste your time to be useless. Reading, for some people become a need that is to do every day such as spending time for eating. Now, what about you? Do you like to read a book? Now, we will show you a new book enPDFd thoughtful machine learning a test driven approach that can be a new way to explore t...

متن کامل

Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations

We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this second part of our two-part treatise, we focus on the problem of data-driven discovery of partial differential equations. Depending on whether the available data is sca...

متن کامل

Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations

We introduce physics informed neural networks – neural networks that are trained to solve supervised learning tasks while respecting any given law of physics described by general nonlinear partial differential equations. In this two part treatise, we present our developments in the context of solving two main classes of problems: data-driven solution and data-driven discovery of partial differe...

متن کامل

From Data to Optimal Decision Making: A Data-Driven, Probabilistic Machine Learning Approach to Decision Support for Patients With Sepsis

BACKGROUND A tantalizing question in medical informatics is how to construct knowledge from heterogeneous datasets, and as an extension, inform clinical decisions. The emergence of large-scale data integration in electronic health records (EHR) presents tremendous opportunities. However, our ability to efficiently extract informed decision support is limited due to the complexity of the clinica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Power Systems

سال: 2021

ISSN: ['0885-8950', '1558-0679']

DOI: https://doi.org/10.1109/tpwrs.2020.3001919